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Abstract 

We used interpretable machine learning models and investigated the predictive power of brain 
anatomy for individual risk tolerance in 118 healthy participants with structural MRI scans. 
Individual risk-taking behavior was measured by the Balloon Analogue Risk Task (BART) and risk 
tolerance was characterized by the extended Expectancy Valence model. Multiple machine 
learning models with cross-validation were adopted based on regional gray matter volumes and 
Shapley values were used to identify the most informative brain regions. The findings 
demonstrated that the left cerebellum and right posterior parietal cortex were the most important 
brain regions, solidifying findings of prior research. 

1. Introduction 

Understanding which regions of the brain play the largest roles in risk-taking tendencies can have 
far-reaching consequences, from advancing addiction research to increasing understandings in 
human behavior (1-4). Prior work has shown that there is substantial association between 
individual human decision-making and neuroanatomy, particularly gray matter volume (GMV) of 
brain regions such as the amygdala, posterior parietal cortex (PPC), and a left cerebellar region 
(2-4). However, most studies used univariate statistical methods to analyze these separate 
regions in a group level. Here, we used interpretable machine learning methods to build and 
explain predictive models for predicting the risk-taking behavior measures, specifically risk 
tolerance, based on gray matter volumes of brain regions associated with risk-taking behavior.  

2. Methods 

We adopted interpretable machine learning methods to build predictive models for predicting the 
risk-taking behavior measures based on gray matter volumes of brain regions associated with 
risk-taking behavior in a sample of 118 healthy participants with structural MRI scans and risk-
taking behavior/risk tolerance measures during the Balloon Analogue Risk Task (BART), a well-
established sequential risky decision paradigm. We explained the machine learning models with 
Shapley values (5), a game theory based method (6), to identify the most informative brain 
regions predictive of risk-taking behavior.  
2.1. Participants 

A cohort of 118 heathy adults were recruited and all the participants were right-handed, had a 
normal or corrected-to-normal vision, and free of neurological or psychiatric issues. The study 
procedure was approved by the University of Pennsylvania institutional review board. Written 
informed consent was obtained from all participants.  



2.2. BART Procedure and Image acquisition 

A MRI-compatible BART paradigm was adopted to measure individual risk-taking behavior within 
the MRI scan chamber (7). Specifically, the BART requires participants to inflate a virtual balloon 
that could either grow larger or explode. For each balloon, the participant may continue or 
discontinue inflating the balloon by pressing two buttons. Larger balloons are always associated 
with greater risk of explosion and increased monetary rewards. Participants may make multiple 
inflation attempts to try and maximize their monetary rewards. If the balloon explodes upon 
inflation, they lose the amount waged on the current balloon from their total winnings. If 
participants decide to stop inflating the balloon, they may collect the wager for the current balloon. 
The timing of inflation is controlled by a cue and participants press a button to continue or 
discontinue inflation only when the color of the cue is green.  
In the BART, the outcome for each trial was immediately provided to participants once they 
collected the wager or the balloon exploded. Each participant’s BART performance was quantified 
by a risk tolerance measure, 𝛾. A detailed description of the BART and the risk tolerance measure 
was presented in our previous study (2). 
MRI scans were performed using a 3T Siemens Trio scanner (Siemens Medical Systems, 
Erlangen, Germany). High-resolution anatomic images were obtained using a T1-weighted 3D 
Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE) sequence with repetition 
time (TR) = 1620 ms, echo time (TE) = 3.09 ms, flip angle (FA) = 15°, 176 contiguous slices, 
matrix size = 192 × 256, voxel size = 0.98 × 0.98 × 1.0 mm3. During the scan, the participants 
were instructed to keep their eyes open and fixate on a cross mark in the center of the screen. All 
the MRI scans were processed using sing CAT12 (www.neuro.uni-jena.de) and SPM12 toolbox 
(www.fil.ion.ucl.ac.uk), implemented in MATLAB 2016, as detained in our previous study (2). Gray 
matter volume (GMV) measures were computed for all regions of interest, including bilateral 
amygdala, PPC, and a left cerebellar region (2-4). 
2.3. Interpretable machine learning 

We used multiple machine learning methods, including random forests (8), support vector 
machines (9), multivariable linear regression, and a generalized additive model (10), to build 
predictive models for predicting individual risk tolerance measures based on GMV measures of 
brain regions associated with risk-taking behavior. The brain regions of interest included bilateral 
amygdala, posterior parietal cortex (PPC), and a left cerebellar region, all identified in prior studies 
(2-4). Their GMV measures were used as features to predict individual risk tolerance measures, 
with age, sex, and total GMV measure as covariates. All the machine learning methods were 
implemented using Scikit-learn (11). 
All the machine learning models were evaluated using the same 10-fold cross-validation by 
randomly splitting the whole cohort into 10 non-overlapping folds and using each of them as a 
testing subset and the remaining as a training subset. This procedure was repeated 1000 times 
in order to obtain a robust estimation of the prediction performance. We adopted Pearson 
correlation between the predicted and measured risk tolerance measures to evaluate the 
prediction performance.  
We explained the machine learning models with Shapley values, a game theory based method, 
to identify the most informative brain regions predictive of the risk-taking behavior. We adopted 
SHAP (SHapley Additive exPlanations), a python package (12), to explain the machine learning 
models and quantify the importance of each of the brain regions of interest for the prediction. As 
a game theoretic approach, it treats each feature as a player and quantifies each player’s 
importance and contribution to the overall prediction using the classic Shapley values (5, 6). 



3. Results 

Characteristics of the participants are summarized in Table 1, including sex, age, total gray matter 
volume, and risk tolerance score. 
Table 1. Participant characteristics 
Total number of participants: n=118 
Sex Male: 62, female: 56 
Age (years)  Mean: 29.7, Median: 27.0, Range: 21-50 
Total gray matter volume (mm3) Mean: 644.5, Median: 643.8, Range: 474.0-822.2 
Risk tolerance measure (𝛾) Mean: 0.46, Median: 0.44, Range: 0.27-0.71,  

 
Table 2 summarizes performance of prediction models built using different machine learning 
methods, including random forests (RF) (8), support vector regression (SVR) (9), multivariable 
linear regression (MLR), and a generalized additive model (EBM) (10). Each method’s 
performance was estimated on the same 1000 runs of the 10-fold cross-validation. These results 
indicated that all the machine learning models successfully predicted risk tolerance measures that 
were significantly correlated with the measured values. Among the machine learning methods 
under investigation, random forests achieved the best performance.   

Table 2. Prediction performance of different machine learning methods under comparison, including 
random forests (RF), multivariable linear regression (MLR), support vector regression (SVR), and a 
generalized additive model (EBM). The performance was measured by mean of Pearson correlation 
coefficients of 1000 runs of the 10-fold cross-validation, and their p-values.  

Methods RF MLR SVR EBM 
Mean of correlation coefficients  0.3924 0.3586 0.3261 0.3043 
Mean of  p-values <0.0001 0.0001 0.0004 0.0013 
Maximum of  p-values 0.0005 0.0016 0.0021 0.0147 

 
 
In order to explain the machine learning models and identify the most important brain regions for 
the prediction, we computed Shapley values of the RF models for each of the individual brain 
regions of interest as well as age, sex, total gray matter volume. As shown in Figure 1, the left 
cerebellar region and the right PPC were identified as the most important brain regions, solidifying 
findings of prior research.  

 
Figure 1. Shapley values (Left: original value; Right: absolution value) of GMVs of brain regions of interest, 
age, gender, and total GMV. GMV = grey matter volume; lCB = left cerebellum; rPPC = right posterior 
parietal cortex; bAMY = bilateral amygdala; tGMV = total GMV of the brain. 



4. Conclusions 

Our study has demonstrated that machine learning models can successfully predict individual risk 
tolerance based on brain anatomy measures. Specifically, the left cerebellum and the right PPC 
were identified as the most indicative brain regions for the prediction, solidifying findings of prior 
research. These findings demonstrate the utility of interpretable machine learning models as a 
quantitative tool to estimate individual behavior based on neuroanatomy measures.  
The work is not being, or has been, submitted for publication or presentation anywhere.  
We are currently working on building machine learning models on the whole brain GMV measures. 
We will report all the results in the final manuscript. To facilitate reproducible research, we will 
make our code publicly available on GitHub once the paper is accepted. 
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